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Abstract—A relatively weak TE wave in a cylindrical cavity can ef-
ficiently bunch an intense electron beam when the phase velocity of the
wave is matched to the beam cyclotron frequency. Fully electromag-
netic, relativistic, 2-3-dimensional simulations illustrate the applica-
bility of this bunching mechanism to high-power generators.

I. INTRODUCTION

N HIGH-POWER electron-beam generators and accel-

erators, the pulse length operating range is largely con-
strained by the acceleration mechanism. Many such de-
vices have pulse lengths in the range 30-300 ns with little
flexibility. A cyclic beam buncher may provide a simple
and effective means for extending the applicability of large
generators and accelerators to short pulse operating ranges
and higher peak powers [1]. In addition, a bunched rela-
tivistic electron beam (REB) is a copious producer of mi-
crowaves, and the wave-beam interaction mechanism may
provide insights on why large amounts of power have been
measured in circulating modes in magnetically insulated
transmission-line oscillators (MILO’s) {2], [3].

Conventional beam-buncher concepts typically involve
high-power momentum modulation followed by a long
drift region in which bunching occurs. In a cyclic beam
buncher, an electromagnetic wave circulates synchro-
nously with the beam and causes the electrons at different
wave phases to travel different path lengths so that the
electrons bunch at the nodes of the wave. The cyclic beam
buncher has certain advantages in size and power require-
ments. Both momentum modulation and bunching are ac-
complished within the same cavity to achieve compact-
ness. Power requirements are low because the physical
bunching mechanism is an exchange of kinetic energy
from some electrons to others in the beam, through an
intermediary electromagnetic field.

The geometry under consideration is shown in Fig. 1.
A wave circulates in an axisymmetric cylindrical cavity.
The electron beam is confined radially and axially by an
external magnetostatic betatron field B.,, and is bunched
by the azimuthal electric field of the wave E,, which must

be greater than approximately the voltage spread in the.

beam divided by the wavelength. The wave phase veloc-
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Fig. 1. Schematic of cyclic beam buncher.

ity is synchronized with the average azimuthal beam ve-
locity . Typicaily, less than one revolution suffices to
bunch the beam.

Once the beam is bunched, it may be extracted for di-
rect applications or used to produce microwave radiation.
If it is to be extracted, the emittance may be minimized
by extracting the beam only at particular values of the
phase. If the beam is to be used to generate microwaves,
the same cavity in which the beam is bunched may be
used to amplify the wave that produced the bunching.

II. TRANsVERSE ELECTRIC CaviTY MODES

In terms of the transverse-electric propagating wave
function [4]

x,,r\{sinng ) )
Yy = EoJ, <;>{ } sin (gnz/d) exp (—iwt)

a cos nf

(1)
the electromagnetic cavity fields are
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2,3, - - -, refer to azimuthal, radial, and axial field vari-
ations, respectively. The bracketed term in (1) denotes
that any linear combination of sin n6 and cos nf may be
chosen for a solution to a particular problem. The quan-
tities x,,, are the ordered zeros of the Bessel function de-
rivative J; (x,,). The parameter £(w) = —iwy, for a me-
dium of inductivity p is the impedivity of the medium.
The dispersion equation for a cavity of height d and radius

ais
LN\ 2 2
Xnp qr 2
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The cavity fields are introduced into the simulation code
field solver by specifying the initial azimuthal and radial
fields. A suitable choice of field solutions is

E = —g E,J,(x;, r/a) cos (nf — wt) sin (qnz/d)
(8)

Ey = —%"" E,J;(xs,r/a) sin (nf — wt) sin (gnz/d).
(9)

Additionally, the time derivatives of the fields are

dE

Ttr = —w g E,J,(x,,r/a) sin (nf — wt) sin (gnz/d)
(10)

dEg X,’,p

= +w o E,J,(xsr/a) cos (nf — wt) sin (gnz/d)
(11)

which are used for time update of the external electric
fields in the simulation field-solving routine [5], [6]. Once
the electric fields are specified, the magnetic field com-
ponents are calculated from the equation dB/dt = —V X
E.

The field normalization, the knowledge of which is re-
quired to scale the simulation field strengths, depends on
the cavity mode excited and is given by

ETE

Onpq

(12)
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III. SiIMULATION SETUP

The computer simulations were performed with the ISIS
and MERLIN codes [5], [6]. MERLIN is a fully electro-
magnetic, relativistic, particle-in-cell plasma simulation
code that runs in two spatial dimensions with three mo-
mentum components per particle. The code can be used
in a wide variety of coordinate systems, including carte-
sian x-y(z), cylindrical z-r(6), and cylindrical-polar r-
6(z). In each case the omitted coordinate has been en-
closed in parentheses. For the present problem, the cylin-
drical-polar coordinate system is relevant. In this system,
there is an implicit assumption of axial uniformity (3 /dz
— 0). MERLIN also permits the use of a wide variety of
boundary conditions: conducting, open, wave-transmit-
ting, and periodic. Internal conductors (perfect and im-
perfect) and dielectrics may also be used and, optionally,
moved. For the simulations reported in this paper, a con-
ducting outer boundary was employed, and the internal
medium was taken to be a vacuum. Although MERLIN
does treat beam space charge effects, such effects are small
for the examples chosen.

A. Coordinate Specification

Electromagnetic simulations in the r-6 plane are sub-
ject to a severe Courant limit on the time step because of
the very small spatial size of the cells near the origin. We
therefore introduce a transformation in the radial coordi-
nate that increases the size of cells near the axis relative
to the size of cells in the vicinity of the layer. The trans-
formation we use [7] is

G (1 4+
S = —1In -
2 a’

where r is the true radial coordinate, s is the transformed
computational coordinate, and the smallest cells are near
r = a,. Another way of avoiding this problem, of course,
is to omit simulating the region near the axis. We choose
to include the axis in order to simulate an experiment
lacking a central conductor; a high degree of beam bunch-
ing can push particles towards the interior of the cavity.
Additionally, (13) allows for the simulation of both cylin-
drical and toroidal cavities. In the r- plane, the region 0
< 0 =< 2w, was discretized with 100 X 64 cells. Fig. 2
shows the spatial finite-difference grid resulting from this
discretization and (13).

(13)

B. Simulation Parameters

As an example, we consider a 35-MeV (v = 69) elec-
tron beam having a radial temperature of 70 keV and in-
jected into a 0.28-m-radius cavity at a radial position of
0.14 m from the cavity center.

The magnetostatic field necessary to confine this beam
at 0.14 m radius is about 0.85 T, so that the relativistic
gyrofrequency Q. = eBy/y mis2 - 10° s™'. Beam thick-
nesses were varied from Ar = 2 to Ar = 8 mm, and the
average particle density was ny = 5 - 10" em™?. The
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Fig. 2. Spatial grid. Finest zoning is at » = 0.155 m, approximate spatial
average position of bunched beam at extraction time. For reference,
electron beam injected at radius of 0.14 m is shown at early times.

reference value (at vy = vy and n = ny) of the relativistic
plasma frequency, w, = (ezno/eo'yom)'/z, was 5 - 10°
s”', so that the ratio w./w, was 0.4.

The time step for the calculation was chosen very small,
ot = 107" s, so that high harmonics of all relevant fre-
quencies were well resolved.

The condition that the trapping width be wide enough
for most particles to be trapped [1] is

2
Ay 1 /1 -
n<l>BO<E0/c<< s> B, (14)
% n 2

where Avy,;, /v is the beam thermal spread and s is the be-
tatron field index. For the parameters listed in Table I,
and for azimuthal mode n = 5, the inequality becomes 2
MV/m s E, s 10 MV /m. Synchronism between the
wave phase velocity and the beam velocity v, = c re-
quires

(15)
or, forn =5, w = 1.07 x 10057, or f= 1.7 GHz.

w = nfl,

C. Electron Layer Confined by Magnetostatic Betatron
Field

To start the simulation, we require the presence of a
relativistic charged particle layer in rotational equilibrium
under an imposed axial betatron magnetic field. The first
task for the simulation code then is to obtain a numerical
solution for that equilibrium. We use the method outlined
by Gisler [7].

Although the particles in the layer may have a finite
temperature, we nelgect it in obtaining the equilibrium
solution. We assume that the flow is laminar and that the
particles have no axial or radial motion. Each particle is
thus assumed to be in equilibrium at its own radial posi-
tion. The equations that must be solved are

1d

——(rE,) = p/eg = qn(r)/e

rdr (16)
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TABLE 1
SIMULATED CYCLIC BEAM BUNCHER

Beam energy 35 MeV (y = 69)

Radial temperature of electrons 70 keV
Beam energy spread Ay /vy = 0.002
Beam major radius 0.14m
Beam width 8.2 mm
Beam current 120, 7.5 A
Cavity radius 0.28 m
Magnetostatic field, B, 085T
RF mode TEs,
RF field at beam 1,2MV/m
RF field maximum 2,4MV/m
Interaction angle (5/6)2x
(5/6)27 cycle time 2.44 ns
Bunch separation on output 0.587 ns
dB.
—= = —poJy = —pogn(r)Be (17)
dr
g(E, + BcB.) + ymvi/r = 0 (18)

where B8 = vy/c, v = (1 — B*)~'/2 is the relativistic
Lorentz factor, and m and q are the particle mass and
charge, respectively.

The equilibrium solver in the code works as follows:
given a density profile n(r), we numerically integrate (16)
to obtain the radial electric field profile. An initial guess
for the particle energies is found by taking the energy re-
quired for a single particle to maintain a circular orbit at
the desired average radius ry in the imposed magnetic field

By:
_ <|‘I'Bo>
Yo = o.
mc

We then correct this guess for the space-charge depres-
sion of the particle energies as a function of radius, using
the electric field profile already calculated. The velocities
obtained from the space-charge-depressed energies are
used in (17) to calculate the diamagnetic depression of the
magnetic field interior to the layer (preserving the total
magnetic flux). Equation (18) is then solved for the spe-
cific particle momentum, u = @3, and the solution is used
to obtain a new guess for y(r). Iteration continues be-
tween (17) and (18) until convergence is satisfactory, usu-
ally in less than ten iterations. This system of equations
is solved in a similar manner by Chernin and Lau [8].

(19)

IV. SIMULATIONS

At time zero, a circulating electromagnetic wave in a
TE mode is established in the cylinder. Fig. 3 shows the
contours of the RF field components at t = 0. The polarity
of every other contour changes, and the field propagates
to the right (positive ¢ direction) in the figure.

Fig. 4 depicts the magnitude of Ey at spatial locations
corresponding to the maximum field strength and the field
strength at the location of the unperturbed beam. For a
peak field amplitude of 4 MV /m in a TE;); mode, a beam
injected at 0.14 m sees, approximately, a +2 MV /m
modulation field.
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Fig. 3. Contours of E, and E,. Every other contour reverses polarity with maximum amplitude of +4 MV /m. Fields propagate
to the right.
A - r — 0 code, this ‘‘injection’’ is mocked by placing a REB
Eg (max) TS . ; o
at the injection radius and assuring that it is in equilib-
rium, as described in Section III-C. We have found it con-
20 - _—Fo venient, for diagnostics reasons, to inject a beam that is
R (beam) 2.44 ns in length; i.e., corresponding to an angle 6 =
£ 5/6(2x). This situation is shown in Fig. 5(a). In an ac-
Y Y A O Y e T tual experiment, the injected beam might be 30-300 ns in
© length.
w Because of the RF circulating wave, the propagating
Py beam traveling in the same counter-clockwise (positive 6)
direction is modulated by the wavefield. Attime ¢ = 1 ns
(Fig. 5(d)), the pentagonal profile resulting from the TEs;;
0 ) - RF mode is apparent.
o0 1.57 3.14 471 6.28 Beyond 1 ns, the beam begins to bunch, reaching a

0 - radians

Fig. 4. Magnitude of E, versus 6 at peak field amplitude (through peaks
of contours shown in Fig. 3), and field amplitude at 0.14 m (radius of
injected beam). These waveforms travel to the right.

Fig. 5 shows the time evolution of the beam electrons
through an angle § = (5/6)2x. The beam is injected at
the first time step of the simulation. In an experimental
situation, an REB would be injected through a port in a
field-free region of the cylindrical cavity. After 5/6 of a
revolution, the bunched beam would be extracted from a
port in the same field-free region. The “‘cylindrical’’ cav-
ity might even be only a 300° resonant cavity to facilitate
injection and extraction. Moreover, the ‘‘cylindrical’
cavity might have a slight helical pitch to avoid interfer-
ence of the extracted beam with the injected beam. In the

maximum index of modulation of 6.3 (ratio of densities
in the bunched and tenuous beam regions) at 2.44 ns. In
agreement with the simple analysis [1], the simulations
show that if the beam were not extracted at 2.44 ns (8 =
(5/6)2m), the lateral bunches would tend to fold and
spread out the bunched electrons in the azimuthal direc-
tion, thereby debunching the beam.
The bunching period is

7, =21/w

and for an RF frequency f = 1.7 GHz, the bunch sepa-
ration at the ‘‘output’” (6 = (5/6)2x) is 0.587 ns.

Fig. 6 shows the evolution of the same injected beam
but with the peak RF wave amplitude reduced from 4 to
2 MV /m. For this case the field amplitude at the beam is
approximately 1 MV /m and the beam is only marginally
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Fig. 5. Relativistic electron beam (y = 69) at times ¢+ = 0, 0.35, 0.70,
1.05, 1.39, 1.74, 2.09, and 2.44 ns. Maximum RF wave amplitude at
beam ~2 MV /m; RF frequency is 1.7 GHz.

bunched. For a static wave, a wave amplitude of 10
MV /m is required to achieve density modulation. These
results are in good agreement with the resonant-like con-
ditions specified by (14) and (15).

A cyclic beam buncher was also simulated in the TE,;,
mode with corresponding agreement found with the the-
oretical predictions of [1].

V. CONCLUSION

Cyclic beam bunching has been demonstrated in a nu-
merical simulation of a 35-MeV (y = 69), 4.2-GW re-
lativistic electron beam injected into a cylindrical cavity
in which a TE RF mode is circulating. For a 4-MV /m
peak field amplitude in the TE;;; mode and an RF fre-
quency of 1.7 GHz, a modulation index of 6.3 was
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Fig. 6. Relativistic electron beam (y = 69) at times ¢t = 0, 0.35, 0.70,
1.05, 1.39, 1.74, 2.09, and 2.44 ns. Maximum RF wave amplitude at
beam ~1 MV /m; RF frequency is 1.7 GHz.

achieved, with beam bunches appearing every 0.6 ns at
the plane of maximum interaction angle, 6 = (5/6)2w
rad.

The simulation results were found to be in close agree-
ment with the linear single-particle theoretical results of
[1]. Also in agreement with [1], the simulations showed
that low-emittance beam bunching is possible as long as
the RF-field energy dominates the self-field energy of the
bunched beam.
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